2023 年度 授業計画(シラバス)

学	科	診療放射線技師学科(夜	友間部)	科	目	区	分	専門基礎分野	授業の方法		講	妄
科目	名	放射線物理学 I		必修	§/選	択(別の	必修	授業時数(単位数)	60	(2)	時間(単位)
対 象:	学 年	1年次		学期	及て	耀	诗限	後期	教室名	第3村	交舎7	01教室
担当	教 員	今井 良一	実務経験と その関連資格									

《授業科目における学習内容》

後に学習する「放射線計測学」「放射化学」「放射線生物学」「放射線治療学」等を理解するために必要な「放射線物理学」 の基礎知識の習得を目指す。本科目では原子の構造・放射線の定義と種類からスタートし、放射線(特にX線)の放出され る原理・性質・特性等、放射線物理学の基礎的な知識を学習する。

《成績評価の方法と基準》

出席点20点、平常点10点、筆記試験70点

《使用教材(教科書)及び参考図書》

教科書: 放射線医学物理学 第3版増補 西臺武弘 文光堂配布プリント

《授業外における学習方法》

指定した教科書を事前に読んでおくこと 授業終了時に示す課題を実施しておくこと

《履修に当たっての留意点》

放射線物理学 I は診療放射線技師として働いていく上で必須の科目である。理解するまでしっかりと学習する必要があります。

授美方	業の 法		内 容	使用教材	授業以外での準備学習 の具体的な内容	
第	講義	授業を 通じての 到達目標	放射線の歴史を理解し電子と電磁波が何かを説明できる	教科書	予習復習は欠かさず行 うこと	
1	我形式	各コマに おける 授業予定	放射線の歴史・電子と電磁波	配布資料		
第	講義	授業を 通じての 到達目標	力学の基本であるエネルギーと運動量について説明できる	教科書	7 TS1/4-TS1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
2	我形式	各コマに おける 授業予定	エネルギーと運動量	配布資料	予習復習は欠かさず行うこと	
第	講義形式	授業を 通じての 到達目標	運動エネルギーと位置エネルギーの和が保存することを根拠に、粒子の運動を理解する	光 和 **	予習復習は欠かさず行 うこと	
3 回		各コマに おける 授業予定	運動エネルギーと位置エネルギー			
第	講義	授業を 通じての 到達目標	質量エネルギーについて説明できる	光 幻 事	マ羽佐知はたみさが 伝	
4	莪形式	各コマに おける 授業予定	相対論と質量エネルギー	教科書 配布資料	予習復習は欠かさず行うこと	
第	講	授業を 通じての 到達目標	光子の波動性・粒子性について説明できる		予習復習は欠かさず行 うこと	
5	義形式	各コマに おける 授業予定	光子の性質			

授美方	業の 法		内 容	使用教材	授業以外での準備学習 の具体的な内容	
第	講義	授業を 通じての 到達目標	物質波・電子の波動性について説明できる	教科書	予習復習は欠かさず行	
6 □	形式	各コマに おける 授業予定	物質波・電子の波動性	配布資料	うこと	
第	講義	授業を 通じての 到達目標	放射線の分類と性質について説明できる	教科書 -	予習復習は欠かさず行	
7 回	形式	各コマに おける 授業予定	放射線の分類と性質	配布資料	うこと	
第 8	講義	授業を 通じての 到達目標	ボーア原子模型について説明できる	数 利 書	予習復習は欠かさず行	
8	我 形 式	各コマに おける 授業予定	水素原子の構造	教科書 配布資料	うこと	
第	講義	授業を 通じての 到達目標	電子の量子数を理解する	教科書	予習復習は欠かさず行	
9 🗓	形式	各コマに おける 授業予定	電子の量子数	配布資料	プロ後回は人がで911	
第	講義	授業を 通じての 到達目標	多電子原子の電子配列について説明できる		予習復習は欠かさず行 うこと	
10回	我形式	各コマに おける 授業予定	多電子原子の電子軌道			
第	講義形式	授業を 通じての 到達目標	原子の電子が励起・電離する現象について説明できる	教科書 配布資料	予習復習は欠かさず行 うこと	
11 回		各コマに おける 授業予定	電子の励起・電離			
第	講義	授業を 通じての 到達目標	原子核を構成する要素とその特徴, 原子核の表記方法を説明 できる	教科書	予習復習は欠かさず行 うこと	
12回	我形式	各コマに おける 授業予定	原子核の構造と表記	配布資料		
第	講義	授業を 通じての 到達目標	核力と結合エネルギーについて説明できる	教科書 配布資料	予習復習は欠かさず行 うこと	
13 回	我形式	各コマに おける 授業予定	核力と結合エネルギー			
第	講義	授業を 通じての 到達目標	原子核毎の結合エネルギーと安定性の関係について説明でき る	教科書 配布資料	子羽有羽はおみな半年	
14	莪形式	各コマに おける 授業予定	結合エネルギーと原子核の安定性		予習復習は欠かさず行 うこと	
第	講義	授業を 通じての 到達目標	放射能の定義と原子核壊変について説明できる	一教科書 配布資料	マ羽佐羽は たいケギケ	
15 回	義形式	各コマに おける 授業予定	放射能と原子核壊変		予習復習は欠かさず行うこと	

2023 年度 授業計画(シラバス)

学 科	診療放射線技師学科(夜間部)	科目区分	専門基礎分野	授業の方法	講義
科目名	放射線物理学 I	必修/選択の別	必修	授業時数(単位数)	60 (2) 時間(単位)
対象学年	1年次	学期及び曜時限	後期	教室名	第3校舎701教室
担当教員	今井 良一 実務経験と その関連資料	-			

《授業科目における学習内容》

後に学習する「放射線計測学」「放射化学」「放射線生物学」「放射線治療学」等を理解するために必要な「放射線物理学」の 基礎知識の習得を目指す。本科目では原子の構造・放射線の定義と種類からスタートし、放射線(特にX線)の放出される原理・性質・特性等、放射線物理学の基礎的な知識を学習する。

《成績評価の方法と基準》

筆記試験70点、出席点20点、平常点10点

《使用教材(教科書)及び参考図書》

教科書: 放射線医学物理学 第3版増補 西臺武弘 文光堂 配布プリント

《授業外における学習方法》

指定した教科書を事前に読んでおくこと 授業終了時に示す課題を実施しておくこと

《履修に当たっての留意点》

放射線物理学 I は診療放射線技師として働いていく上で必須の科目である。理解するまでしっかりと学習する必要があります。

授美方	業の 法	内 容		使用教材	授業以外での準備学習 の具体的な内容
第	講義形	授業を 通じての 到達目標	原子核壊変による放射能減衰の式について説明できる	教科書	予習復習は欠かさず行 うこと
16	我形式	各コマに おける 授業予定	壊変の法則		
第	講義	授業を 通じての 到達目標	α 壊変と核分裂について説明できる	教科書	予習復習は欠かさず行
17	我 形 式	各コマに おける 授業予定	α 壊変と核分裂	配布資料	プ 自復 自 (4 人 / / *C 9 1] うこと
第	講義	授業を 通じての 到達目標	β-壊変とβ+壊変について説明できる		予習復習は欠かさず行 うこと
18	我形式	各コマに おける 授業予定	β 壊変と陽電子		
第	講義	授業を 通じての 到達目標	原子核の代表的な核反応について説明できる	数 利 事	マ羽体切けんようとどに
19	莪形式	各コマに おける 授業予定	原子核反応	教科書 配布資料	予習復習は欠かさず行うこと
第	講義	授業を 通じての 到達目標	核反応の際の放出エネルギーについて説明できる		予習復習は欠かさず行 うこと
20	義 形 式	各コマに おける 授業予定	核反応と放出エネルギー		

	業の 法		内 容	使用教材	授業以外での準備学習 の具体的な内容
第	講義	授業を 通じての 到達目標	荷電粒子による物質の電離現象の概要を説明できる	教科書	予習復習は欠かさず行
21 回	我形式	各コマに おける 授業予定	荷電粒子と物質の相互作用1	配布資料	うこと
第	講義	授業を 通じての 到達目標	荷電粒子による物質中での制動放射の概要を説明できる	教科書	予習復習は欠かさず行
22	我形式	各コマに おける 授業予定	荷電粒子と物質の相互作用2	配布資料	うこと
第	講義	授業を 通じての 到達目標	荷電粒子の物質中でのエネルギー損失について説明できる	*/. */\ - ! -	予習復習は欠かさず行
23 回	我形式	各コマに おける 授業予定	荷電粒子のエネルギー損失と阻止能	教科書 配布資料	うこと
第	講義	授業を 通じての 到達目標	荷電粒子の物質中での飛程について説明できる	教科書	予習復習は欠かさず行
24	我形式	各コマに おける 授業予定	荷電粒子の飛程	配布資料	丁省復省は久から 9 11 うこと
第	講義	授業を 通じての 到達目標	X線管の構造と発生したX線の特徴について説明できる	*************************************	予習復習は欠かさず行 うこと
25 回	莪形式	各コマに おける 授業予定	X線管とその特性	教科書 配布資料	
第	講義形式	授業を 通じての 到達目標	光子による光電効果・コンプトン散乱・対生成の概要を説明できる	教科書 配布資料	予習復習は欠かさず行 うこと
26 回		各コマに おける 授業予定	光子と物質の相互作用1		
第	講義	授業を 通じての 到達目標	相互作用のエネルギー依存性について説明できる	****\	マ羽体切けんようとどに
第 27 回	莪形式	各コマに おける 授業予定	光子と物質の相互作用2	教科書 配布資料	予習復習は欠かさず行うこと
第	講	授業を 通じての 到達目標	荷電粒子の物質中での減弱を表す式を理解する		ネ羽作羽けたかた半行
28	義形式	各コマに おける 授業予定	放射線の減弱1	教科書 配布資料	予習復習は欠かさず行うこと
第	講	授業を 通じての 到達目標	光子線の物質中での減弱を表す式を理解する	教科書 配布資料	マ羽佐羽はねよと半ケ
29 回	義形式	各コマに おける 授業予定	放射線の減弱2		予習復習は欠かさず行うこと
第	講	授業を 通じての 到達目標	中性子の基本性質を説明できる	▼教科書 配布資料	文现货 项点 4.2.5 12/2
30	義形式	各コマに おける 授業予定	中性子の分類、散乱、捕獲		予習復習は欠かさず行うこと