2025 年度 授業計画(シラバス)

学 科	バイオ・再生医療学科		科目区分	専門分野	授業の方法	実習
科目名	医薬品演習		必修/選択の別	選択必修	授業時数(単位数)	60 (4) 時間(単位)
対象学年	2年		学期及び曜時限	後期	教室名	3階実習室
担当教員	矢野 昌人	実務経験と その関連資格				

《授業科目における学習内容》

医薬品の開発プロセスに関わる実践的な技術と知識を、演習を通じて体系的に学習する。特に、医薬品候補化合物の評価に必要なスクリー ニング、毒性試験、タンパク質合成・発現、抗体作成、遺伝子およびタンパク質の発現解析などを中心に扱う。

《成績評価の方法と基準》

1. レポート評価:70%

- 3. 出席点:20%
- 2. 授業中の態度・グループ貢献度評価:10%

《使用教材(教科書)及び参考図書》

《授業外における学習方法》

- 1. 使用教材(教科書)を事前に読んでおくこと
- 2. 実習ノートを作成し、毎回の実習ごとに記録を残し、事象や結果に関する考察も記載すること

《履修に当たっての留意点》

実験に積極的に取り組む姿勢が求められます。基本的な生物学・化学の知識が前提となります。

授美方		内 容		使用教材	授業以外での準備学習 の具体的な内容
第	実習	授業を 通じての 到達目標	医薬品開発の流れと各工程の役割を理解する。	配布プリント	前期「細胞培養実習」の 内容を復習しておくこと
1 🗓	自形式	各コマに おける 授業予定	ドラッグディスカバリーから市販後調査までの概略、演習テーマ の紹介、安全管理指導。	実習ノート	
第	実習	授業を 通じての 到達目標	医薬品開発の流れと各工程の役割を理解する。		前期「細胞培養実習」の内容を復習しておくこと
2	自形式	各コマに おける 授業予定	ドラッグディスカバリーから市販後調査までの概略、演習テーマ の紹介、安全管理指導。		
第	実習形式	授業を 通じての 到達目標	スクリーニングの意義と種類(ハイスループット、仮想スクリーニング等)を理解する。	配布フリント 実翌ノート	実験プロトコル・実習ノートより作業工程を確認し ておくこと
k α 🗓		各コマに おける 授業予定	ターゲット選定、スクリーニング手法の分類、データ解釈の基本。		
第	実	授業を 通じての 到達目標	スクリーニングの意義と種類(ハイスループット、仮想スクリーニング等)を理解する。	T	実験プロトコル・実習ノー
4	習形式	各コマに おける 授業予定	おける ┃ターゲット選定、スクリーニング手法の分類、データ解釈の基本。 ┃		トより作業工程を確認し ておくこと
第	実習形式	授業を 通じての 到達目標	スクリーニング系の構築とスクリーニング結果の解析を体験する。	- ボフナニープリン人	実験プロトコル・実習ノー
5 回		各コマに おける 授業予定	仮想スクリーニングまたは模擬スクリーニングの実施、結果解析。	配布プリント 実習ノート	トより作業工程を確認し ておくこと

	業の 法		内 容	使用教材	授業以外での準備学習 の具体的な内容
第	実習	授業を 通じての 到達目標	スクリーニング系の構築とスクリーニング結果の解析を体験する。	配布プリント	実験プロトコル・実習ノー
6 □	形式	各コマに おける 授業予定	仮想スクリーニングまたは模擬スクリーニングの実施、結果解析。	実習ノート	トより作業工程を確認しておくこと
第	実習形式	授業を 通じての 到達目標	転写・翻訳系を用いたタンパク質発現系の理解と設計。	配布プリント実習ノート	実験プロトコル・実習ノートより作業工程を確認しておくこと
7 回		各コマに おける 授業予定	細胞外タンパク質合成系の基礎、テンプレート構築法		
第	実習	授業を 通じての 到達目標	転写・翻訳系を用いたタンパク質発現系の理解と設計。		実験プロトコル・実習ノー
8 0	形 各コマに おける 授業予定		細胞外タンパク質合成系の基礎、テンプレート構築法	・配布プリント 実習ノート	トより作業工程を確認しておくこと
第	実習	授業を 通じての 到達目標	in vitro translation 系を実際に操作し、発現を評価する。	- ボコナエープリン ₋ L	実験プロトコル・実習ノー
9	自形式	各コマに おける 授業予定	ける キットを用いた反応、タンパク質の検出(SDS-PAGEなど)		トより作業工程を確認し ておくこと
第	実習	授業を 通じての 到達目標	in vitro translation 系を実際に操作し、発現を評価する。	配布プリント	実験プロトコル・実習ノートより作業工程を確認しておくこと
10 回	育形式	各コマに おける 授業予定	キットを用いた反応、タンパク質の検出(SDS-PAGEなど)	実習ノート	
第	実習形式	授業を 通じての 到達目標	医薬品候補物質に対する毒性評価の基礎を理解する。	配布プリント 実習ノート	実験プロトコル・実習ノートより作業工程を確認しておくこと
11		各コマに おける 授業予定	急性毒性、慢性毒性、細胞毒性などの評価法と指標。		
第	実習	授業を 通じての 到達目標	医薬品候補物質に対する毒性評価の基礎を理解する。	■配布プリント	実験プロトコル・実習ノートより作業工程を確認しておくこと
12 回	自形式	各コマに おける 授業予定	急性毒性、慢性毒性、細胞毒性などの評価法と指標。	実習ノート	
第	実習	授業を 通じての 到達目標	細胞ベースの毒性試験の実技を通じて評価法を学ぶ。	配布プリント	実験プロトコル・実習ノー
13 回	形式	各コマに おける 授業予定	MTTアッセイまたはLDHアッセイ、IC₅の算出など。	実習ノート	トより作業工程を確認し ておくこと
第	実習	授業を 通じての 到達目標	細胞ベースの毒性試験の実技を通じて評価法を学ぶ。	配布プリント 実習ノート	実験プロトコル・実習ノー
14 回	習形式	各コマに おける 授業予定	MTTアッセイまたはLDHアッセイ、IC50の算出など。		トより作業工程を確認し ておくこと
第	実習形式	授業を 通じての 到達目標	抗体作成の流れと各工程の意義を理解する。	≖1 →211 \ .1	実験プロトコル・実習ノー
15 回		各コマに おける 授業予定	抗原設計、免疫法、ハイブリドーマ技術の概論。	配布プリント 実習ノート	トより作業工程を確認し ておくこと

2025 年度 授業計画(シラバス)

学 科	バイオ・再生医療学科		科目区分	専門分野	授業の方法	実習
科目名	医薬品演習		必修/選択の別	選択必修	授業時数(単位数)	60 (4) 時間(単位)
対象学年	2年		学期及び曜時限	後期	教室名	3階実習室
担当教員	矢野 昌人	実務経験と その関連資格				

《授業科目における学習内容》

医薬品の開発プロセスに関わる実践的な技術と知識を、演習を通じて体系的に学習する。特に、医薬品候補化合物の評価に必要なスクリー ニング、毒性試験、タンパク質合成・発現、抗体作成、遺伝子およびタンパク質の発現解析などを中心に扱う。

《成績評価の方法と基準》

1. レポート評価:70%

- 3. 出席点:20%
- 2. 授業中の態度・グループ貢献度評価:10%

《使用教材(教科書)及び参考図書》

《授業外における学習方法》

- 1. 使用教材(教科書)を事前に読んでおくこと
- 2. 実習ノートを作成し、毎回の実習ごとに記録を残し、事象や結果に関する考察も記載すること

《履修に当たっての留意点》

実験に積極的に取り組む姿勢が求められます。基本的な生物学・化学の知識が前提となります。

授美方	業の 法	内 容		使用教材	授業以外での準備学習 の具体的な内容
第	実習	授業を 通じての 到達目標	抗体作成の流れと各工程の意義を理解する。	配布プリント	実験プロトコル・実習ノートより作業工程を確認しておくこと
16 回	形式	各コマに おける 授業予定	抗原設計、免疫法、ハイブリドーマ技術の概論。	実習ノート	
第	実習	授業を 通じての 到達目標	抗体作成に必要な基礎操作を学ぶ。	悪	実験プロトコル・実習ノートより作業工程を確認しておくこと
17 回	習形式	各コマに おける 授業予定	免疫反応の模擬実験、精製(プロテインAカラム等)の体験。	12日 イソント 1年翌 ノート	
第	実習形式	授業を 通じての 到達目標	抗体作成に必要な基礎操作を学ぶ。	11年 アリント 宝翌 ノート	実験プロトコル・実習ノー トより作業工程を確認し ておくこと
18 回		各コマに おける 授業予定	免疫反応の模擬実験、精製(プロテインAカラム等)の体験。		
第	9 息 .		抗体の特異性・親和性を評価する手法を学ぶ。	T	実験プロトコル・実習ノートより作業工程を確認しておくこと
19			ELISA操作、データの読み取りと定量解析。	配布プリント 実習ノート	
第	実習形式	授業を 通じての 到達目標	抗体の特異性・親和性を評価する手法を学ぶ。	- 第7 <i>七</i> - プリンク	実験プロトコル・実習ノー
20		各コマに おける 授業予定	ELISA操作、データの読み取りと定量解析。	配布プリント 実習ノート	トより作業工程を確認し ておくこと

	業の 内容			使用教材	授業以外での準備学習 の具体的な内容
第	実習	授業を 通じての 到達目標	遺伝子発現解析技術(RT-PCR、マイクロアレイ、RNA-Seq)の原理を理解する。	配布プリント	実験プロトコル・実習ノートより作業工程を確認しておくこと
21 回	形式	各コマに おける 授業予定	各手法の特徴と用途、データの解釈方法。	実習ノート	
第	実習形式	授業を 通じての 到達目標	遺伝子発現解析技術(RT-PCR、マイクロアレイ、RNA-Seq)の原理を理解する。	配布プリント	実験プロトコル・実習ノートより作業工程を確認しておくこと
22 回		各コマに おける 授業予定	各手法の特徴と用途、データの解釈方法。	実習ノート	
第	実習	授業を 通じての 到達目標	mRNAの定量的解析手法を学ぶ。	. 両. 左. プリント	実験プロトコル・実習ノー
23 回	自形式	各コマに おける 授業予定	RNA抽出、逆転写、リアルタイムPCR、定量解析。	配布プリント 実習ノート	トより作業工程を確認しておくこと
第	実習	授業を 通じての 到達目標	mRNAの定量的解析手法を学ぶ。	配布プリント	実験プロトコル・実習ノー
24 回	ョ 形式	各コマに おける 授業予定	हिन्नराट おける RNA抽出、逆転写、リアルタイムPCR、定量解析。		トより作業工程を確認し ておくこと
第	実習形式	授業を 通じての 到達目標	タンパク質レベルでの発現確認法を習得する。	配布プリント 実習ノート	実験プロトコル・実習ノートより作業工程を確認しておくこと
25回		各コマに おける 授業予定	サンプル調製、SDS-PAGE、ブロッティング、抗体検出。		
第	実習形式	授業を 通じての 到達目標	タンパク質レベルでの発現確認法を習得する。	配布プリント 実習ノート	実験プロトコル・実習ノートより作業工程を確認しておくこと
26 回		各コマに おける 授業予定	サンプル調製、SDS-PAGE、ブロッティング、抗体検出。		
第	実習	授業を 通じての 到達目標	演習で得られたデータの整理とプレゼンテーション準備	配布プリント	実験プロトコル・実習ノートより作業工程を確認しておくこと
27 回	形式	各コマに おける 授業予定	ポスター・スライド作成、グループ内での発表練習	実習ノート	
第	実習	授業を 通じての 到達目標	演習で得られたデータの整理とプレゼンテーション準備	配布プリント	実験プロトコル・実習ノー
28 回	習形式	各コマに おける 授業予定	ポスター・スライド作成、グループ内での発表練習	実習ノート	トより作業工程を確認しておくこと
第	実習	授業を 通じての 到達目標	自らの学びを言語化・共有し、今後の応用につなげる	配布プリント 実習ノート	実験プロトコル・実習ノー
29 回	習形式	各コマに おける 授業予定	スターまたは口頭発表、質疑応答、フィードバック、総括講義		トより作業工程を確認し ておくこと
第	実習	授業を 通じての 到達目標	自らの学びを言語化・共有し、今後の応用につなげる	ー配布プリント 実習ノート	実験プロトコル・実習ノートより作業工程を確認しておくこと
30	習形式	各コマに おける 授業予定	スターまたは口頭発表、質疑応答、フィードバック、総括講義		