2020 年度 授業計画(シラバス)

学 科	生命工学技術科		科目	区	分	専門分野	授業の方法		冓義
科目名	バイオ技術特講 I		必修/選	銭択ℓ	D別	必修	授業時数(単位数)	30 (2) 時間(単位)
対象学年	バイオサイエンス専攻 3年	F	学期及7	ブ曜日	時限	後期	教室名	40	1教室
担当教員	安達 隆之	美務栓験と その関連姿数	化粧品会社にて、基礎研究(研究開発室)・美容機器開発(開発部)・感応評価(美容研究課)・製品企画(マーケティング部)・原価管理(製品管理課)・人事全般(人事部)の業務を10年にわたり担当						

《授業科目における学習内容》

上級バイオ技術者認定試験の過去問題を中心に、演習的に授業を実施する。その過程で対象分野についての知識や理解を 深め、問題解答のポイントを理解することを目指す。

《成績評価の方法と基準》

授業内容に対する理解度を全授業終了後の確認テスト、毎回の授業ごとの小テストによって判断し、評価する。 1 確認テスト70% 2 出席評価20% 3 出席点10%

《使用教材(教科書)及び参考図書》

- ・上級バイオ技術者認定試験対策問題集(平成31年12月試験対応版)
- ・関連問題のプリント配布

《授業外における学習方法》

・配布したプリント、テキストを使用しての問題演習

《履修に当たっての留意点》

上級バイオ技術者認定試験は難関ですが、3年間の集大成に相当します。自分達が何を学んできたか、何を持って専門と言い得るのか、その一つの形がこの資格になります。進路とは別に為してきたことを証明し得るものとして捉え、意欲的に取り組んでください。

授業の 方法			内 容	使用教材	授業以外での準備学習 の具体的な内容	
第 1 回	講義演	授業を 通じての 到達目標	資格の重要性と合格に向けたポイントを知り、試験本番までに何をどのようなスケジュールで学ぶべきかを把握し学習スケジュールを構築できる		対象範囲科目の授業・ 実習ノートと教科書の見 直し	
	個習 形式	各コマに おける 授業予定	ガイダンス:資格の意味・目的、合格のためのポイント、授業スケ ジュール	プリント配布		
第	講義演	景 到達目標 いて学習する		プリント配布	対象範囲科目の授業・ 実習ノートと教科書の見 直し	
2	 個習形式					
第	講義	授業を 適にての 到達目標 野について学習する		プリント配布	対象範囲科目の授業・ 実習ノートと教科書の見 直し	
3 曜	演習形式	各コマに 上級バイオ技術者認定試験演習 おかる な酸ないパク質・転写知知、新記後修飾				
第	講義	授業を 適比での 到達目標 しいて理解し説明できる		プリント配布	対象範囲科目の授業・ 実習ノートと教科書の見 直し	
4 ^没 型 形	演習形式	るコマに と級バイオ技術者認定試験演習 は歴史とパク質・DELD SSCD フットプリント法				
第	講義	授業を 通じての 到達目標	上級バイオ技術者認定試験:核酸に関わる実験技術(ハイブリダイゼーション等)分野について学習する		対象範囲科目の授業・	
5 回 刑	演習形式	各コマに おける 授業予定	上級バイオ技術者認定試験演習 核酸タンパク質:実験技術、ハイブリダイゼーション	プリント配布	実習ノートと教科書の見直し	

授業の 方法				使用教材	授業以外での準備学習 の具体的な内容	
第	講義	授業を 通じての 到達目標	上級バイオ技術者認定試験:レポーター遺伝子、アッセイ法について理解し説明できる		対象範囲科目の授業・	
6 □	演習形式	各コマに おける おける 授業予定 核酸タンパク質:レポーター遺伝子、アッセイ法について		プリント配布	実習ノートと教科書の見 直し	
第 7 回	講義演	授業を 通じての 到達目標	上級バイオ技術者認定試験:ベクター、遺伝子導入法について 理解し説明できる		対象範囲科目の授業・ 実習ノートと教科書の見 直し	
	習形式	各コマに おける 授業予定	上級バイオ技術者認定試験演習 核酸タンパク質:ベクター、遺伝子導入法	プリント配布		
第	講義演	授業を 通じての 到達目標	PCRに関する上級バイオ技術者認定試験関連問題を解くことが できる		対象範囲科目の授業・	
8	興習形式	各コマに おける 技能をタンパク質:PCRについて		プリント配布	実習ノートと教科書の見 直し	
第	講義演	授業を 通じての 到達目標	通じての「二人が、「日本」文明日応に改成、ファム開業に関する万月で十日す		対象範囲科目の授業・	
9 回	習形式	各コマに よける おける 授業予定 核酸タンパク質:ゲノム編集		プリント配布	実習ノートと教科書の見 直し	
第	講義演	授業を 通じての 到達目標	上級バイオ技術者認定試験:サイクルシークエンスについて学習する		対象範囲科目の授業・ 実習ノートと教科書の見 直し	
10 回	側習形式	各コマに おける 授業予定	上級バイオ技術者認定試験演習 核酸タンパク質:サイクルシークエンス	プリント配布		
第	講義演	授業を 通じての 到達目標	上級バイオ技術者認定試験:電気泳動やDNA変異と修復に関する分野について学習する		対象範囲科目の授業・ 実習ノートと教科書の見 直し	
11 回	個習形式	各コマに おける 授業予定	上級バイオ技術者認定試験演習 核酸タンパク質:電気泳動、DNA変異と修復	プリント配布		
第	講義演	 			対象範囲科目の授業・	
12	習形式			プリント配布	実習ノートと教科書の見 直し	
第	講義演	授業を 通じての 到達目標	上級バイオ技術者認定試験:タンパク質、セントラルドグマについて学習する		対象範囲科目の授業・ 実習ノートと教科書の見 直し	
13 回	習形式	各コマに おける 授業予定	上級バイオ技術者認定試験演習 核酸タンパク質:タンパク質、セントラルドグマ	プリント配布		
第	講義演習形式	授業を 通じての 到達目標	上級バイオ技術者認定試験:酵素に付いて学習する		対象範囲科目の授業・	
14		各コマに おける 授業予定	上級バイオ技術者認定試験演習 核酸タンパク質:酵素	プリント配布	実習ノートと教科書の見 直し	
第	講義演習形式	授業を 通じての 到達目標	本講義で勉強した全ての内容について学び、上級バイオ技術者認定試験関連問題を解くことができる		対象範囲科目の授業・	
75 回		各コマに おける 授業予定	総合的な演習により理解度を確認する	プリント配布	実習ノートと教科書の見 直し	