2020 年度 授業計画(シラバス)

学 科	臨床工学技士科(昼間部)	科目区分	専門基礎分野	授業の方法	講義演習
科目名	機械工学	必修/選択の別	必修	授業時数(単位数)	60 (2) 時間(単位)
対象学年	3年次	学期及び曜時限	通年	教室名	
担当教員	平井 三友 実務経験とその関連資格				

《授業科目における学習内容》

機械工学の基礎となる機械力学、材料力学、熱力学について解説し、演習を行う。

《成績評価の方法と基準》

中間試験と期末試験を行う。その評価点:70% 出席評価20%。 小テストなどによる平常評価10%。

《使用教材(教科書)及び参考図書》

教科書:機械工学概論(コロナ社) 授業参考となるプリントを配布する。

《授業外における学習方法》

教科書や配布プリントを事前に読んでおくこと。 授業で行った演習を復習として解きなおしておくこと。

《履修に当たっての留意点》

基礎となる力学をまず解説します。機械工学の基礎を理解することは、機器の利用や管理で役に立ちます。

	業の 法		内 容	使用教材	授業以外での準備学習 の具体的な内容
第 1 回	講義演	授業を 通じての 到達目標	単位および質量体の重さの考え方を説明できる。(機械力学)	教科書 配布プリント	教科書と配布プリントを 読んでおくこと。
	興習形式	各コマに おける 授業予定	単位系、次元解析、力、質量について学ぶ。		
第	講義演	授業を 通じての 到達目標	物体にかかる力の考え方を説明できる。(機械力学)	茅 和事	教科書と配布プリントを 読んでおくこと。
2	順習形式	各コマに おける 授業予定	合成と分解、モーメント、力の釣合いについて学ぶ。	教科書 配布プリント	
第	講義沒	授業を 通じての 到達目標	物体の運動の考え方を説明できる。(機械力学)	**************************************	教科書と配布プリントを 読んでおくこと。
k 3 🗓	演習形式	各コマに おける 授業予定	摩擦、運動の法則、運動量、慣性力について学ぶ。	・教科書 配布プリント	
第	講 授業を 通じての 到達目標	通じての	物体の運動の考え方を説明できる。(機械力学)	*****	教科書と配布プリントを 読んでおくこと。
4 回	演習形式	各コマに おける 授業予定	等速直線運動、等加速度運動、遠心力について学ぶ。	教科書 配布プリント	
第	講義演習形式	授業を 通じての 到達目標	物体の運動の考え方を説明できる。(機械力学)	*************************************	数の事しまった一分による
5回		各コマに おける 授業予定	運動の法則、運動量、エネルギーについて学ぶ。	・教科書 配布プリント	教科書と配布プリントを 読んでおくこと。

	業の :法		内 容	使用教材	授業以外での準備学習 の具体的な内容
第	講義沒	授業を 通じての 到達目標	物体の振動の考え方を説明できる。(機械力学)		
第 6 回	演習形式	各コマに おける 授業予定	自由振動、粘性減衰振動、強制振動について学ぶ。	一教科書 配布プリント	教科書と配布プリントを 読んでおくこと。
第	講義沒	授業を 通じての 到達目標	材料にかかる力と変位の関係を説明できる。(材料力学)	******	教科書と配布プリントを 読んでおくこと。
7 回	演習形式	各コマに おける 授業予定	外力と変位、圧縮、引張、応力、ひずみについて学ぶ。	一教科書 配布プリント	
第	講義	授業を 通じての 到達目標	応力とひずみの関係を説明できる。(材料力学)	1/L-(7) = 1-	**************************************
8 回	演習形式	各コマに おける 授業予定	せん断、応力、ひずみ、材料の性質について学ぶ。	一 教科書 配布プリント	教科書と配布プリントを 読んでおくこと。
第	講義沒	授業を 通じての 到達目標	フックの法則とその他の応力が説明できる。(材料力学)	******	## # \ #\ #\ \
9	演習形式	各コマに おける 授業予定	フックの法則、曲げ、ねじり、熱応力について学ぶ。	一教科書 配布プリント	教科書と配布プリントを読んでおくこと。
第	講義	授業を 通じての 到達目標	様々な応力状態を説明できる。(材料力学)	*****	教科書と配布プリントを 読んでおくこと。
10回	演習形式	各コマに おける 授業予定	応力集中、疲れ、クリープ、衝撃について学ぶ。	一教科書配布プリント	
第	講義	授業を 通じての 到達目標	熱量の基本が説明できる。(熱力学)	*****	教科書と配布プリントを 読んでおくこと。
11 回	演習形式	各コマに おける 授業予定	温度、熱量、比熱、熱力学の法則について学ぶ。	一教科書 配布プリント	
第	講義	授業を 通じての 到達目標	仕事とエネルギーの関係が説明できる。(熱力学)	■教科書	教科書と配布プリントを 読んでおくこと。
12	演習形式	各コマに おける 授業予定	熱量、仕事、内部エネルギーついて学ぶ。	教付書 配布プリント	
第	講義沒	授業を 通じての 到達目標	気体のエネルギーが説明できる。(熱力学)	****\ **	教科書と配布プリントを 読んでおくこと。
13 回	演習形式	各コマに おける 授業予定	ボイルシャルルの法則、気体の状態変化について学ぶ。	一教科書 配布プリント	
第	講義	授業を 通じての 到達目標	熱機関と伝熱工学が説明できる。(熱力学)	*****	教科書と配布プリントを 読んでおくこと。
14 回	演習形式	各コマに おける 授業予定	サイクル、伝熱工学について学ぶ。	一教科書 配布プリント	
第	講義	授業を 通じての 到達目標	各力学の演習が解ける。		##1 + 1 = 1 + 01 \ 1 - 2
15 回	演習形式	各コマに おける 授業予定	これまでの総復習		教科書と配布プリントを 読んでおくこと。

2020 年度 授業計画(シラバス)

学 科	臨床工学技士科(昼間部)	科目区分	専門基礎分野	授業の方法	講義演習
科目名	機械工学	必修/選択の別	必修	授業時数(単位数)	60 (2) 時間(単位)
対象学年	3年次	学期及び曜時限	通年	教室名	
担当教員	平井 三友 実務経験とその関連資格				

《授業科目における学習内容》

機械工学の基礎となる機械要素、流体力学、医学流体力学、波動について解説し、演習を行う。

《成績評価の方法と基準》

中間試験と期末試験を行う。その評価点:70% 出席評価20%。 小テストなどによる平常評価10%。

《使用教材(教科書)及び参考図書》

教科書:木本恭司 編著 コロナ社 2002 授業参考となるプリントを配布する。

《授業外における学習方法》

教科書や配布プリントを事前に読んでおくこと。 授業で行った演習を復習として解きなおしておくこと。

《履修に当たっての留意点》

基礎となる力学をまず解説します。機械工学の基礎を理解することは、機器の利用や管理で役に立ちます。

授美方	業の法		内 容	使用教材	授業以外での準備学習 の具体的な内容
第 16 回	講義沒	授業を 通じての 到達目標	各種機械要素について説明できる。(機械要素)	教科書配布プリント	教科書と配布プリントを 読んでおくこと。
	演習形式	各コマに おける 授業予定	機械要素の分類、各種の機械要素について学ぶ。		
第	講義演	授業を 通じての 到達目標	流体の物理的性質について説明できる。(流体力学)	数 割 書	教科書と配布プリントを 読んでおくこと。
17	個習形式	各コマに おける 授業予定	流体の物理的性質、粘性、圧力、マノメーター	教科書 配布プリント	
第	講義演習形式	授業を 通じての 到達目標	流体に働く圧力と流体の流れについて説明できる。(流体力学)	教科書配布プリント	教科書と配布プリントを 読んでおくこと。
18 回		各コマに おける 授業予定	パスカルの原理、浮力、定常流・非定常流		
第	講義	授業を 通じての 到達目標	流体の運動について説明できる。(流体力学)	ガ な 書	教科書と配布プリントを 読んでおくこと。
19	演習形式	各コマに おける 授業予定	連続の式、運動方程式	教科書 配布プリント	
第	講義演習形式	授業を 通じての 到達目標	竜太の運動における定理について説明できる。(流体力学)	*************************************	*/
20 回		各コマに おける 授業予定	ベルヌーイの定理、トリチェリの定理、相似則	教科書 配布プリント	教科書と配布プリントを 読んでおくこと。

	業の 法			使用教材	授業以外での準備学習 の具体的な内容
第	講義沒	授業を 通じての 到達目標	管内流の運動について説明できる。(流体力学)	セレイハ キ ・	ゼレイリ キャ) ボコーナー より 1、 .) よ
21 回	演習形式	各コマに おける 授業予定	流体力学(レイノルズ数、層流・乱流、ハーゲンポアズイユの法 則)	教科書 配布プリント	教科書と配布プリントを 読んでおくこと。
第	講義演	授業を 通じての 到達目標	血液の粘性について説明できる。(医学流体力学)		教科書と配布プリントを 読んでおくこと。
22 回	倒習 形式	各コマに おける 授業予定	血液の粘性、赤血球の特異性、キャッソンの式		
第	講義演	授業を 通じての 到達目標	大動脈の血流について説明できる。(医学流体力学)	教科書	教科書と配布プリントを
23 回	興習形式	各コマに おける 授業予定	大動脈流、血流の運動	配布プリント	教件者と配布ノリントを読んでおくこと。
第	講義演	授業を 通じての 到達目標	大動脈胴と脈波について説明できる。(医学流体力学)	教科書	教科書と配布プリントを 読んでおくこと。
24 回	倒習 形式	各コマに おける 授業予定	バルサルバ洞、脈波	配布プリント	
第	講義演	授業を 通じての 到達目標	波の一般的性質について説明できる。(波動)	教科書配布プリント	教科書と配布プリントを 読んでおくこと。
25 回	興習形式	各コマに おける 授業予定	波の性質、種類		
第	講義演	授業を 通じての 到達目標	波の合成について説明できる。(波動)	教科書 配布プリント	教科書と配布プリントを 読んでおくこと。
26 回	興習形式	各コマに おける 授業予定	合成、干涉		
第	講義演	授業を 通じての 到達目標	波の運動について説明できる。(波動)	教科書	数科書と配布プリントを
27 回	習形式	各コマに おける 授業予定	波動方程式、速度、反射	配布プリント	教科書と配布プリントを 読んでおくこと。
第	講義演	授業を 通じての 到達目標	音のエネルギーについて説明できる。(波動)	教科書	教科書と配布プリントを 読んでおくこと。
28 回	習形式	各コマに おける 授業予定	音、エネルギー、超音波	配布プリント	
第	講義	授業を 通じての 到達目標	波の伝達と反射とレーザーについて説明できる。(波動)	教科書	教科書と配布プリントを 読んでおくこと。
29 回	演習形式	各コマに おける 授業予定	ドップラー効果、音響インピーダンス、レーザー	配布プリント	
第	講義演	授業を 通じての 到達目標	各力学の演習が解ける。		数利妻 レffiコ 左づい ス ダ・
30 回	博習形式	各コマに おける 授業予定	これまでの総復習		教科書と配布プリントを 読んでおくこと。