2020 年度 授業計画(シラバス)

学 科	生命工学技術科		科目		포	分	基礎分野	授業の方法		講	虔
科目名	AI数学 I		必修/	/選技	沢 σ.	別	必修	授業時数(単位数)	30	(2)	時間(単位)
対象学年	AIロボット専攻 1年		学期及	ひび	曜日	寺限	後期	教室名			
担当教員	長谷川 優	実務経験と その関連資格									

《授業科目における学習内容》

AIの構築に必要となる基礎的な数学理論(線形代数学,解析数学,確率・統計学)を、Pythonによる可視化を交えながら体系的に学ぶ

《成績評価の方法と基準》

- 1. 期末試験·定期課題: 70% 2. 出席: 20% 3. 平常: 10%

《使用教材(教科書)及び参考図書》

- 1. 最短コースでわかる ディープラーニングの数学 (日経BP社) 2. Pythonからはじめる数学入門

《授業外における学習方法》

オンラインのプログラミング環境にアカウントを作成してもらい、課題資料に沿って自習を行う

《履修に当たっての留意点》

数学はエンジニアリングの基礎力となるため、一歩づつ理解を深めながら取り組むこと

	業の 法			使用教材	授業以外での準備学習 の具体的な内容	
第	講	授業を 通じての 到達目標	微分を含む方程式を理解することができる	**************************************		
1	義形式	各コマに おける 授業予定	常微分方程式(1)	教科書 PC	教科書1の予習	
第	講	授業を 通じての 野連目標		*/. */. **	_	
2 回	義形式	各コマに おける 授業予定	常微分方程式(2)	教科書 PC	教科書1の予習	
第	講	授業を 通じての 到達目標	1階線形の微分方程式を解くことができる	ゼム でい ニキ・		
3	義形式	各コマに おける 授業予定	常微分方程式(3)	教科書 PC	教科書1の予習	
第	講	授業を 通じての 到達目標 同次系の微分方程式を解くことができる		*** *\ -1.		
4	義形式	各コマに おける 授業予定	常微分方程式(4)	教科書 PC	教科書1の予習	
第	講	授業を 通じての 到達目標 2階線形の微分方程式を解くことができる		ゼレ イソ キャ		
5	義形式	各コマに おける 授業予定	常微分方程式(5)	教科書 PC	教科書1の予習	

	業の _{5法} 内 容			使用教材	授業以外での準備学習 の具体的な内容		
第	講	授業を 通じての 到達目標	2階線形の微分方程式を重ね合わせの原理で解くことができる	新利 妻	教科書1の予習		
6 □	義形式	各コマに おける 授業予定	常微分方程式 (6)	教科書 PC			
	講義	各그マに		- 教科書 PC	教科書1の予習		
7	莪形式						
	講	授業を 通じての 到達目標	連続的な確率の定義を理解できる	****			
8 0	義形式	各コマに おける 授業予定	確率密度	教科書 PC	教科書1の予習		
第	講義	授業を 通じての 到達目標	離散的な確率の定義を理解できる	*****			
9 0	戦 形式	各コマに おける 授業予定	確率質量	教科書 PC	教科書1の予習		
第	講義	授業を 通じての 到達目標	Well-definedな確率密度関数の定義を理解できる	教科書	教科書1の予習		
10 回	戦 形式	各コマに おける 授業予定	正規分布	教科音 PC			
第	講	授業を 通じての 到達目標	代表値に対する標本の性質を理解できる	*** 의 · Br	教科書1の予習		
11	義形式	各コマに おける 授業予定	母変数と標本変数	教科書 PC			
第	講義	授業を 通じての 到達目標	代表値に対する標本のズレを理解できる教科書				
12 回	戦形式	各コマに おける 授業予定	母変数の推定と不偏性	教科音 PC	教科書1の予習		
第	講	授業を 通じての 到達目標	代表値の推定を行う方法を理解できる	- 数: 利. 主	教科書1の予習		
13	義形式	各コマに おける 授業予定	統計的検定(1)	教科書 PC			
第 14 回	講義形式	授業を 通じての 到達目標	t検定やF検定などの一般的な検定手法を理解できる	- 数 科 士	教科書1の予習		
		各コマに おける 授業予定	統計的検定(2)	教科書 PC			
第	講	授業を 通じての 到達目標	後期の授業内容の理解と定着を行うことができる		これまで講義内容の復		
15 回	義形式	各コマに			こ4 0ま (神教パ)合い/復 習		