2021 年度 授業計画(シラバス)

学 科	人工知能学科		科目	区	分	専門基礎分野	授業の方法	講義
科目名	機械学習		必修/遺	選択(の別	必修	授業時数(単位数)	60 (4) 時間(単位)
対象学年	2年		学期及	び曜日	時限	通年	教室名	301教室
担当教員	高瀬 和之	実務経験と その関連資格	株式会社	プレン	プロジ	ェクトにて、社会人向け	IoT/AI基礎知言	敞講座に3年間従事。

《授業科目における学習内容》

プログラミング言語「Python」を用いて、数学的な記述を行う方法,および機械学習の基礎理論を学習する

《成績評価の方法と基準》

- 1. 期末試験・定期課題: 70% (データ分析を実行し、所定の精度を達成するようプログラムを制作する)
- 2. 出席: 20%
- 3. 平常: 10%

《使用教材(教科書)及び参考図書》

スッキリわかる Python による機械学習入門(インプレス)

《授業外における学習方法》

オンラインのプログラミング環境にアカウントを作成してもらい、課題資料に沿って自習を行う

《履修に当たっての留意点》

理論としての数学,応用としてのプログラミングを横断して、初めて深い理解が得られるので、双方をおろそかにしないこと

	業の 法		内 容	使用教材	授業以外での準備学習 の具体的な内容
第	講義	授業を 通じての 到達目標	講義内容を把握し、学習イメージを構築できる	教科書	Googleのアカウント作成
1	^我 形式	各コマに おける 授業予定	AI・機械学習の概観解説	教件書 PC	と 2段階認証を設定する
第	講義演	授業を 通じての 到達目標	Pythonの理解度を確認するとともに、理解を補うことができる	#ATO ==	1万% 02431日安子
2	興習形式	各コマに おける 授業予定	Python理解度試験 / Python理解度試験解説	教科書 PC	1年次の学習内容を 復習する
第	講義演	授業を 通じての 到達目標	Pythonでのデータの取り扱い方を学習する	*//.*/1 *	
3	漢習形式	各コマに おける 授業予定	データと基本統計量(1)	教科書 PC	教科書を読む
第	講義演	授業を 通じての 到達目標	データを要約するための数学的理論を学習する	**************************************	
4	漢習形式	各コマに おける 授業予定	データと基本統計量 (2)	教科書 PC	教科書を読む
第	講義沒	授業を 通じての 到達目標	代数計算ライブラリの使い方を学習する	**************************************	
5	演習形式	各コマに おける 授業予定	Sympyによる代数計算 (1)	教科書 PC	教科書を読む

	業の 法		内 容	使用教材	授業以外での準備学習 の具体的な内容	
第	講義演	授業を 通じての 到達目標	代数問題をPythonと代数計算ライブラリで解くことができる	教科書	教科書を読む	
6 回	個習形式	各コマに おける 授業予定	Sympyによる代数計算 (2)	教育音 PC		
第7回	講義演	授業を 通じての 到達目標	行列計算ライブラリの使い方を学習する	■配布プリント	行列・行列式の考え方	
	個習形式	各コマに おける 授業予定	Numpyによる行列計算 (1)	PC PC	を 復習する	
第	講義演	授業を 通じての 到達目標	行列問題をPythonと行列計算ライブラリで解くことができる	- ボコナニー プリンス	行列・行列式の考え方	
8 回	興習形式	各コマに おける 授業予定	Numpyによる行列計算 (2)	■配布プリント PC	を 復習する	
第	講義演	授業を 通じての 到達目標	与えられたデータから、分類を行う手法を学習する	数科書		
9 回	順習形式	各コマに おける 授業予定	教師なし学習の基礎 - クラスタリング	■教科書 PC	教科書を読む	
第	講義	授業を 通じての 到達目標	与えられたデータから、代表となる特徴を抽出する手法を学習 する	**** A T T T T T T T T T T T T T T T T T	教科書を読む	
10	演習形式	各コマに おける 授業予定	教師なし学習の基礎 - 主成分分析	■教科書 PC		
第	講義	授業を 通じての 到達目標	古典手法による予測モデルの構築方法を学習する	**** A T T T T T T T T T T T T T T T T T	教科書を読む	
11	演習形式	各コマに おける 授業予定	教師あり学習の基礎 - 古典手法による予測モデル (1)	教科書 PC		
第	講義	授業を 通じての 到達目標	予測モデルの導出に関する数学的理論を学習する	## 전 = #		
12	演習形式	各コマに おける 授業予定	教師あり学習の基礎 - 古典手法による予測モデル (2)	■教科書 PC	教科書を読む	
第	講義	授業を 通じての 到達目標	古典手法による画像認識の手順を学習する	- * * * * * * * * * * * * * * * * * * *		
13 回	演習形式	各コマに おける 授業予定	教師あり学習の基礎 - 古典手法による画像認識(1)	■教科書 PC	教科書を読む	
第	講義演	授業を 通じての 到達目標	画像認識の精度向上に必要となる考え方を学習する	- * * * * * * * * * * * * * * * * * * *		
14 回	演習形式	各コマに おける 授業予定	教師あり学習の基礎 - 古典手法による画像認識(2)	■教科書 PC	教科書を読む	
第	演	授業を 通じての 到達目標	与えられた分析課題に対して、適切な分析を実装することがで きる	*/. */	W771 & ±2.2.1.0	
弗 15 同	習形式	各コマにおける授業予定	まとめ	■教科書 PC	学習した事をまとめ、逆引きできる準備をする	

2021 年度 授業計画(シラバス)

学 科	人工知能学科		科目	区	分	専門基礎分野	授業の方法	講義
科目名	機械学習		必修/遺	選択(の別	必修	授業時数(単位数)	60 (4) 時間(単位)
対象学年	2年		学期及	び曜日	時限	通年	教室名	301教室
担当教員	高瀬 和之	実務経験と その関連資格	株式会社	プレン	プロジ	ェクトにて、社会人向け	IoT/AI基礎知詞	敞講座に3年間従事。

《授業科目における学習内容》

プログラミング言語「Python」を用いて、数学的な記述を行う方法,および機械学習の基礎理論を学習する

《成績評価の方法と基準》

- 1. 期末試験・定期課題: 70% (データ分析を実行し、所定の精度を達成するようプログラムを制作する)
- 2. 出席: 20%
- 3. 平常: 10%

《使用教材(教科書)及び参考図書》

スッキリわかる Python による機械学習入門(インプレス)

《授業外における学習方法》

オンラインのプログラミング環境にアカウントを作成してもらい、課題資料に沿って自習を行う

《履修に当たっての留意点》

理論としての数学,応用としてのプログラミングを横断して、初めて深い理解が得られるので、双方をおろそかにしないこと

	業の 法		内 容	使用教材	授業以外での準備学習 の具体的な内容	
第	講義	授業を 通じての 到達目標	微分・積分計算ライブラリの使い方を学習する	か む 事		
16	莪形式	各コマに おける 授業予定	Sympyによる微分・積分計算 (1)	教科書 PC	教科書を読む	
第	講義	授業を 通じての 到達目標	微分・積分問題をPythonと微分・積分計算ライブラリで解くことができる	**************************************		
17	演習形式	各コマに おける 授業予定	Sympyによる微分・積分計算 (2)	教科書 PC	教科書を読む	
第	講義演	授業を 通じての 到達目標	確率・統計計算ライブラリの使い方を学習する	*//.*/1 *		
18	順習形式	各コマに おける 授業予定	Numpyによる確率・統計計算 (1)	教科書 PC	教科書を読む	
第	講義演	授業を 通じての 到達目標	確率・統計問題をPythonと確率・統計計算ライブラリで解くことが できる	**************************************		
19	 個習形式	各コマに おける 授業予定	Numpyによる確率・統計計算 (2)	教科書 PC	教科書を読む	
第	講義演	授業を 通じての 到達目標	決定木分析による分類モデルの構築方法を学習する	≖ ∃- /	桂却且 の 之 之十七	
20	漢習形式	各コマに おける 授業予定	教師あり学習の基礎 - 古典手法による分類モデル (1)	配布プリント PC	情報量の考え方を 復習する	

	業の 法		内 容	使用教材	授業以外での準備学習 の具体的な内容	
第	講義演	授業を 通じての 到達目標	ブースティングによる分類精度向上の考え方を学習する	配布プリント	確率分布の考え方を	
21 回	習形式	各コマに おける 授業予定	教師あり学習の基礎 - 古典手法による分類モデル (2)	PC	復習する	
第 22 回	講義演	授業を 通じての 到達目標	Support Vector Machineに関する数学的理論を学習する	配布プリント	評価関数の考え方を	
	習形式	各コマに おける 授業予定	教師あり学習の基礎 - 古典手法による分類モデル(3)	PC	作画例数の与えがを 復習する	
第	講義演	授業を 通じての 到達目標	特徴空間の変換による分類精度向上の考え方を学習する	配布プリント	座標変換の考え方を	
23 回	個習形式	各コマに おける 授業予定	教師あり学習の基礎 - 古典手法による分類モデル(4)	PC	復習する	
第	講義演	授業を 通じての 到達目標	予測モデルを発展させることで、推薦を行えることを学習する	教科書		
24 回	個習 形式	各コマに おける 授業予定	機械学習の応用 - レコメンデーション (1)	文件音 PC	教科書を読む	
第	講義演	授業を 通じての 到達目標	分類モデルを発展させることで、協調推薦を行えることを学習す る	新 利 ≢	教科書を読む	
25	興習形式	各コマに おける 授業予定	機械学習の応用 - レコメンデーション (2)	教科書 PC		
第	講義	授業を 通じての 到達目標	時系列データの特性と、その数学的理論を学習する	N 이 크	教科書を読む	
26 習	演習形式	各コマに おける 授業予定	機械学習の応用 - レコメンデーション (3)	教科書 PC		
第	講義	授業を 通じての 到達目標	テキストデータに特有な特徴量に関して学習する	사지 >	教科書を読む	
27 回	演習形式	各コマに おける 授業予定	機械学習の応用 - テキスト分類とフィルタリング (1)	■教科書 PC		
第	講義演	授業を 通じての 到達目標	テキストデータのフィルタリング手法を学習する	数利妻·		
28 回	演習形式	各コマに おける 授業予定	機械学習の応用 - テキスト分類とフィルタリング (2)	教科書 PC	教科書を読む	
第	講義	授業を 通じての 到達目標	フィルタリングを発展させることで、評判分析を行えることを学習する	사이 하		
29 回	演習形式	各コマに おける 授業予定	機械学習の応用 - テキスト分類とフィルタリング (3)	教科書 PC	教科書を読む	
第	演习	授業を 通じての 到達目標	与えられた分析課題に対して、適切な分析を実装することがで きる	松 利 妻	学 羽□ 4 青 4 4 1 1 1 1	
弗 30 同	習形式	各コマに おける 授業予定	後期総合演習	·教科書 PC	学習した事をまとめ、 逆引きできる準備をする	